A Novel Fault Diagnosis Method for TE Process Based on Optimal Extreme Learning Machine

نویسندگان

چکیده

Chemical processes usually exhibit complex, high-dimensional and non-Gaussian characteristics, the diagnosis of faults in chemical is particularly important. To address this problem, paper proposes a novel fault method based on Bernoulli shift coyote optimization algorithm (BCOA) to optimize kernel extreme learning machine classifier (KELM). Firstly, random forest treebagger (RFtb) used select features, data set optimized. Secondly, new BCOA proposed automatically adjust network hyperparameters KELM improve performance. Finally, optimized feature sequence input into obtain final results. The Tennessee Eastman (TE) process have been collected verify effectiveness method. A comprehensive comparison analysis with widely algorithms also performed. results demonstrate that outperforms other methods terms classification accuracy. average rate 21 found be 89.32%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle

The on-board sensor fault detection and isolation (FDI) system is essential to guarantee the reliability and safety of an aero engine. In this paper, a novel online sequential extreme learning machine with memory principle (MOS-ELM) is proposed for detecting, isolating, and reconstructing the fault sensor signal of aero engines. In many practical online applications, the sequentially coming dat...

متن کامل

A Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and an Improved Kernel Extreme Learning Machine

Rolling bearings are key components of rotary machines. To ensure early effective fault diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components, and the approximate...

متن کامل

A Novel Multiple Instance Learning Method Based on Extreme Learning Machine

Since real-world data sets usually contain large instances, it is meaningful to develop efficient and effective multiple instance learning (MIL) algorithm. As a learning paradigm, MIL is different from traditional supervised learning that handles the classification of bags comprising unlabeled instances. In this paper, a novel efficient method based on extreme learning machine (ELM) is proposed...

متن کامل

Eccentricity Fault Diagnosis Studying for a Round Rotor Synchronous Machine

The paper presents a mathematical base modeling combined to Modified-Winding -Function-Approach (MWFA) for eccentricity fault detection of a round-rotor synchronous machine. For this aim, a 6-pole machine is considered, and the machine inductances are computed by MWFA in healthy and also under eccentricity fault. A numerical discrete-time method has been proposed to machine modeling in voltage-...

متن کامل

A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”

In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12073388